Cell-Surface Phenol Soluble Modulins Regulate Staphylococcus aureus Colony Spreading

نویسندگان

  • Hayato Kizaki
  • Yosuke Omae
  • Fumiaki Tabuchi
  • Yuki Saito
  • Kazuhisa Sekimizu
  • Chikara Kaito
چکیده

Staphylococcus aureus produces phenol-soluble modulins (PSMs), which are amphipathic small peptides with lytic activity against mammalian cells. We previously reported that PSMα1-4 stimulate S. aureus colony spreading, the phenomenon of S. aureus colony expansion on the surface of soft agar plates, whereas δ-toxin (Hld, PSMγ) inhibits colony-spreading activity. In this study, we revealed the underlying mechanism of the opposing effects of PSMα1-4 and δ-toxin in S. aureus colony spreading. PSMα1-4 and δ-toxin are abundant on the S. aureus cell surface, and account for 18% and 8.5% of the total amount of PSMα1-4 and δ-toxin, respectively, in S. aureus overnight cultures. Knockout of PSMα1-4 did not affect the amount of cell surface δ-toxin. In contrast, knockout of δ-toxin increased the amount of cell surface PSMα1-4, and decreased the amount of culture supernatant PSMα1-4. The δ-toxin inhibited PSMα3 and PSMα2 binding to the S. aureus cell surface in vitro. A double knockout strain of PSMα1-4 and δ-toxin exhibited decreased colony spreading compared with the parent strain. Expression of cell surface PSMα1-4, but not culture supernatant PSMα1-4, restored the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. Expression of δ-toxin on the cell surface or in the culture supernatant did not restore the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. These findings suggest that cell surface PSMα1-4 promote S. aureus colony spreading, whereas δ-toxin suppresses colony-spreading activity by inhibiting PSMα1-4 binding to the S. aureus cell surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Requirement of the agr locus for colony spreading of Staphylococcus aureus.

The important human pathogen Staphylococcus aureus is known to spread on soft agar plates. Here, we show that colony spreading of S. aureus involves the agr quorum-sensing system. This finding can be related to the agr-dependent expression of biosurfactants, such as phenol-soluble modulins, suggesting a connection between spreading motility and virulence.

متن کامل

The Sortase A Substrates FnbpA, FnbpB, ClfA and ClfB Antagonize Colony Spreading of Staphylococcus aureus

Staphylococcus aureus is an important human pathogen that is renowned both for its rapid transmission within hospitals and the community, and for the formation of antibiotic resistant biofilms on medical implants. Recently, it was shown that S. aureus is able to spread over wet surfaces. This motility phenomenon is promoted by the surfactant properties of secreted phenol-soluble modulins (PSMs)...

متن کامل

Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces.

The human pathogen Staphylococcus aureus is renowned for the rapid colonization of contaminated wounds, medical implants, and food products. Nevertheless, little is known about the mechanisms that allow S. aureus to colonize the respective wet surfaces. The present studies were therefore aimed at identifying factors used by S. aureus cells to spread over wet surfaces, starting either from plank...

متن کامل

Modulation of Staphylococcus aureus spreading by water.

Staphylococcus aureus is known to spread rapidly and form giant colonies on the surface of soft agar and animal tissues by a process called colony spreading. So far, the mechanisms underlying spreading remain poorly understood. This study investigated the spreading phenomenon by culturing S. aureus and its mutant derivatives on Tryptic Soy Agarose (TSA) medium. We found that S. aureus extracts ...

متن کامل

Phenol-soluble modulins in staphylococci

Phenol-soluble modulins (PSMs) are amphipathic peptides produced by staphylococci that have multiple functions in pathogenesis. For example, they may function as cytotoxins and pro-inflammatory agents. Additionally, in a recent study we demonstrated that Staphylococcus aureus PSMs structure biofilms and cause dissemination during biofilm infection. Based on those results suggesting a surfactant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016